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The pathogenesis of influenza virus infections: the contributions
of virus and host factors
Satoshi Fukuyama1 and Yoshihiro Kawaoka1,2,3,4
Influenza viruses cause acute respiratory inflammation in

humans and symptoms such as high fever, body aches, and

fatigue. Usually these symptoms improve after several days;

however, the 2009 pandemic H1N1 influenza virus [influenza

A(H1N1) 2009] is more pathogenic than seasonal influenza

viruses and the pathogenicity of highly pathogenic H5N1

viruses is still higher. The 1918 influenza pandemic virus

caused severe pneumonia, resulting in an estimated 50 million

deaths worldwide. Several virulence factors have been

identified in these virus strains, but host factors are also

responsible for the pathogenesis of infections caused by

virulent viruses. Here, we review the contributions of both virus

and host factors to the pathogenesis of these viral infections.
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Introduction
Influenza viruses possess RNA as their genome and

belong to the family Orthomyxoviridae [1]. Influenza A

viruses (IAV), together with influenza B viruses, cause

respiratory illness in humans. Wild aquatic birds are the

natural reservoir of IAV [2]. Influenza pandemics occur

when humans are introduced to IAVs with hemagglutinin

(HA) to which they are immunologically naı̈ve [3]. We

have experienced four pandemics since the beginning of

20th century: Spanish influenza (H1N1) in 1918/1919,

Asian influenza (H2N2) in 1957, Hong Kong influenza

(H3N2) in 1968, and H1N1 influenza in 2009. Of these
www.sciencedirect.com
pandemic viruses, the 1918 virus was the most devastat-

ing, causing massive acute pulmonary hemorrhage and

edema [4]. As antibiotics were not available then, sec-

ondary bacterial pneumonia was a major cause of death

among those infected with the virus [5]. Until recently, it

has been difficult to precisely evaluate the pathogenicity

of the 1918 virus relative to other influenza virus strains.

However, in 1999, the reverse genetics of influenza virus

was established, enabling us and others to generate the

1918 virus from cloned cDNAs [6]. Infection of cynomol-

gus macaques with 1918 virus generated by reverse

genetics resulted in severe lung damage and high virus

titers, as well as disruption of the macaques’ antiviral

immune responses [7]. These studies directly demon-

strated that the 1918 virus possessed sufficiently high

pathogenicity to cause fatal pulmonary disease.

The genome of IAV consists of eight RNA segments,

encoding HA, neuraminidase (NA), nucleoprotein (NP),

M1, M2, nonstructural protein (NS) 1, NS2, polymerase

acidic protein (PA), polymerase basic (PB) 1, PB1-F2, and

PB2. Recently, research has focused on using reverse

genetics to elucidate the role of each viral protein in

the pathogenicity of influenza viruses. The range of

severity of diseases caused by genetically similar IAV

in humans is extremely wide, indicating that host con-

ditions play an important role in determining the patho-

genesis of IAV. Experiments with mammals such as mice,

guinea pigs, ferrets, and non-human primates, are

employed to analyze the involvement of host factors in

IAV infections, while gene-targeted mouse models are

useful for testing the function of individual host genes in
vivo. The secretion of type 1 interferon is induced by viral

infection and produces antiviral factors; IFNb knockout

mice are susceptible to influenza virus [8]. Therefore,

type I IFN is a key molecule in the innate immune

responses to infection with influenza virus and the mag-

nitude of the type I IFN response influences the patho-

genicity of the virus. Thus, the pathogenesis of influenza

virus infection in humans depends on a combination of

virus and host factors.

Virulence factors
The influenza viral proteins play a role in the lung

pathology of humans. Among these proteins, HA is

responsible for targeting cells for infection (Table 1)

[9–11]. The HA of seasonal IAV binds to a2-6 sialylated

glycans, which are expressed on the surface of the epi-

thelial cells of the upper respiratory tract in humans [12].

Because of the inflammation caused by seasonal IAV
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Table 1

Mutations in viral proteins that influence viral pathogenicity.

Protein Virus Mutation Pathogenic effect Reference

HA H7N7 A143T Increased attachment to bronchial epithelial cells and

alveolar macrophages in humans

[9]

HA 1918 virus D190E, D225G From a2,6 to a2,3 (loss of transmission ability) [10]

HA Pandemic A(H1N1)

2009

D222G From a2,6 to a2,3 Infection of ciliated bronchial

epithelial cells

[11]

NA H3N2 R292K, E119V, N294S Oseltamivir-resistant (R292K, loss of transmission ability) [62,63]

NA H5N1 H274Y Oseltamivir-resistant [64]

PB1-F2 1918 virus N66S Delay of innate immune responses [28]

PB2 H5N1 T271A Increased polymerase activity in mammalian cells [18]

PB2 H5N1, H7N7 E627K Increased replication in mammalian respiratory tract [19,20]

PB2 H5N1 D701N Increased ability to replicate in mice [21]

PA H5N2 T97I Adaptation in mice [22]

NS1 H5N1 P42S Increase in IFN antagonism [33]

NS1 H5N1 Deletion from 85-94 Impaired inhibition of IFN production [34]

NS1 H3N8 (duck), WSN R127K, V205I, N209D Increased replication and lethality in mice (R127K, loss of

PKR binding)

[35,36]

NS1 H5N1 D92E Low sensitivity to IFN and TNFa [37]
infection is mainly limited to the upper respiratory tract,

the disease is mild. Nonetheless, the viruses spread easily

among human populations mediated by nasal discharges

that contain high titers of live virus. Highly pathogenic

avian H5N1 influenza viruses (HPAIV), however, prefer-

entially recognize a2-3 sialylated glycans and primarily

infect type 2 pneumocytes in the human lung [12].

Therefore, HPAIV infection often results in severe pneu-

monia in humans [13]. Because the primary target cells of

HPAIV are deep in the lower respiratory tract, it is

difficult for HPAIV to cause widespread infection among

humans. Mutations in the HAs of H5N1 viruses confer

upon these mutants the ability to bind to a2-6 as well as

a2-3 sialylated glycans [14]. In the case of influenza

A(H1N1)2009, a D222G substitution in HA, which was

observed in severe and fatal cases, changes the receptor

binding specificity of the virus from a2-6 to a2-3 sialy-

lated glycans [11,15]. A study using cultures of human

tracheobronchial epithelial cells showed that influenza

A(H1N1)2009 with the D222G substitution in its HA

could infect ciliated bronchial cells [11]. This cell tropism

alteration mediated by an HA mutation may increase the

severity of pneumonia. Therefore, we must carefully

monitor the HAs of avian H5N1 viruses for amino acid

mutations that may alter their pandemic potential as well

as the HA of influenza A(H1N1)2009 for mutations that

produce strains with higher pathogenicity.

HA also influences pathogenicity via its susceptibility to

host proteases. For influenza viruses to be infectious, their

HAs must be cleaved into two subunits, HA1 and HA2

[16]. The HA of seasonal IAV possesses a single arginine

at the cleavage site and is cleaved by trypsin-like pro-

teases that are produced by respiratory and gastrointes-

tinal cells. In contrast, the HA of HPAIV possesses

multiple basic amino acids at the cleavage site and is
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susceptible to ubiquitous furin and PC6, which reside in

the trans-Golgi network [17]. This is one reason why

HPAIV cause severe systemic infection leading to

multiple organ failure and death.

The viral RNA polymerase complex consists of PA, PB1,

and PB2. This complex is responsible for the transcription

and replication of the viral genome. Several mutations in

PA and PB2 support better replication of avian viruses in

mammalian cells (Table 1) [18–22]. Therefore, it is

important to monitor mutations in the genes of the

RNA polymerase complex to detect viruses that replicate

well in humans. A/Vietnam/1203/04 (VN1203) H5N1

virus, which was isolated from a fatal human case, is

highly lethal to ferrets and mice [23,24]. When the viral

RNA polymerase genes of VN1203 were replaced with

those of a low pathogenic H5N1 virus, the pathogenicity

of VN1203 was dramatically reduced in these animals

[24]. Watanabe et al. also demonstrated that the RNA

polymerase complex and NP played a role in the patho-

genicity of the 1918 pandemic virus [25�]. Thus, the viral

RNA polymerase complex also contributes to IAV patho-

genicity in mammals.

The PB1 segment encodes a 90-amino acid protein, PB1-

F2 that preferentially localizes to the mitochondria of

infected cells [26]. PB1-F2 induces apoptosis and is a

known virulence factor [27]. The amino acid change

N665S in PB1-F2 was found to be responsible for the high

virulence of both the 1918 pandemic and H5N1 viruses

[28]. This mutation increases the secretion of proinflam-

matory cytokines, such as TNF-a and virus titers in the

lungs. Other viral proteins, such as NA and NS1, are also

implicated in the virulence of IAV. NA is important for

efficient viral replication [29], while NS1 antagonizes

interferon production in virus-infected cells.
www.sciencedirect.com
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Host factors
The immune system protects the host from infection with

influenza virus. Therefore, the pathogenesis of influenza

virus depends on the function of the immune system.

When IAV infect respiratory epithelial cells or alveolar

macrophages, the single-stranded RNA of the influenza

virus is recognized by toll-like receptor (TLR) 7 and

retinoic acid-inducible gene-I (RIG-I) [30,31]. The sig-

naling pathways of TLR7 and RIG-I induce the pro-

duction of type I IFNs and activate antiviral host

responses [32]. However, IAV can escape from the innate

immune response by using NS1 to interfere with the

RIG-I signaling pathway (Table 1) [33–37]. A recent

study revealed that NS1 inhibits the function of tripartite

motif (TRIM) 25 in the ubiquitination of RIG-I, which is

an essential step in the type I IFN response [38��].
Because the NS1 of the 1918 virus efficiently suppressed

the expression of IFN-regulated genes, NS1 is believed

to contribute to pathogenesis by controlling antiviral

innate immune responses [39]. NS1 also binds to protein

kinase R (PKR), a well-known antiviral protein. The

binding of NS1 and PKR inhibits the antiviral function

of PKR by downregulating the translation of the viral

mRNA, which is mediated by phosphorylation of eukar-

yotic translation initiation factor 2 alpha (eIF2a) [40].

The NS1 amino acids at positions 123–127 are essential

for PKR binding and a mutation of these residues affects

pathogenicity in mice [35,36]. In addition to the type I

IFN response, RIG-I and TLR7 induce the production of

inflammatory proteins mediated by NF-kB activation

[41]. Therefore, influenza virus infection induces the

upregulation of several inflammatory cytokines and che-

mokines, such as IL-1b, IL-6, IL-8, TNFa, CCL2 (MCP-

1), CCL3 (MIP-1a), CCL5 (RANTES), and CXCL10

(IP-10) [42]. Among them, CCL2 recruits macrophages to

the virus-infected lung [43]. CCR2-(a receptor of CCL2)

positive macrophages express tumor necrosis factor-

related apoptosis-inducing ligand (TRAIL), which

induces alveolar epithelial cell apoptosis [44]. CCR2

deficiency in IAV-infected mice inhibits macrophage

migration to the lung and increases survival rates [45].

Thus, macrophages that migrate to influenza-infected

lung play a pathogenic role in pulmonary inflammation.

In lung infected with highly pathogenic IAV, such as the

1918 virus or avian H5N1 viruses, sizeable numbers of

neutrophils are also recruited to the inflamed lung [42].

This suggests that neutrophils also contribute to IAV

pathogenesis; however, the role of neutrophils in IAV

infection remains unclear because neutrophils limit virus

replication and lung inflammation [46�].

To maintain homeostasis during IAV infection, a regu-

latory immune system exists in the lung. CD200, a cell

surface glycoprotein, is expressed on respiratory epithelial

cells, and the CD200 receptor (CD200R) is expressed by

myeloid cells, including macrophages, dendritic cells, and

granulocytes [47,48]. In the uninfected state, CD200R
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expression on alveolar macrophages is maintained by IL-

10 and TGFb [49]. However, in lungs infected with IAV,

CD200R expression is upregulated on these macrophages

[49]. Experiments using CD200�/� mice revealed that

CD200-mediated CD200R activation on lung macro-

phages inhibits the recruitment of immune cells, the

production of proinflammatory cytokines, such as TNFa

and IL-6, and inflammation in the IAV-infected lung [49].

As TNFa and IL-6 increase CD200R expression on

alveolar macrophages, there is negative feedback of

inflammatory responses controlled by CD200R.

CD200R+ alveolar macrophages thus have an important

role in resolving inflammation in IAV-infected lung [49].

IL-10 is known to be a major regulatory cytokine that

inhibits inflammatory responses [50]. IL-10-producing

effector CD8T cells are a major source of IL-10 in acute

lung infection with IAV, and IL-10 produced by this

CD8T cell subset controls the excessive lung inflam-

mation caused by IAV infection [51��]. Furthermore, a

recent study shows that IL-2, produced by CD4T cells,

and IL-27 have a synergistic role in the generation of IL-

10-producing CD8T cells [52��]. IL-27, a member of the

IL-12 family, is produced by macrophages, dendritic

cells, and neutrophils [53–55]. Thus, multiple cell-cell

interactions regulate the immune response to IAV in-

fection and maintain the homeostasis of the respiratory

immune system (Figure 1).

As discussed above, the innate immune response is indis-

pensable for the protection of the host against IAV in-

fection. Therefore, a lack of type 1 IFN results in an

increase in virus dissemination and susceptibility to IAV

infection, including H5N1 viruses [56,57]. However, the

unregulated response of proinflammatory cytokines and

chemokines induced by TLR signaling can harm rather

than protect respiratory organs. For example, virus clear-

ance in the lung was better in CD200�/� mice than in

wild-type mice because CD200�/� mice activated their

innate response via their alveolar macrophages [49].

However, this uncontrolled innate immune response

led to severe lung inflammation in the CD200�/� mice

[49]. Therefore, innate immunity is like a two-edged

sword with two distinct roles in the pathogenesis of

IAV infection. In contrast, adaptive immunity, which

involves viral antigen-specific antibodies and cytotoxic

T lymphocyte activity, efficiently eliminates virus-

infected cells and enables hosts to recover from viral

infectious diseases. Immunodeficiency of B cells or T

cells (RAG�/�mice) results in high susceptibility to IAV

infection [58]. Therefore, adaptive immunity provides

essential protection from IAV infection and effective

prevention of repeat infection. Yet, a surprising number

of severe diseases in middle-aged adults, who generally

had normal immune function, were reported during the

2009 (H1N1) pandemic [59]. Interestingly, low affinity

antibodies in sera and immune complexes with low

affinity antibodies were detected in individuals with
Current Opinion in Immunology 2011, 23:481–486
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Figure 1
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A model depicting the multi-cellular interactions that regulate the inflammatory response during influenza virus infection. Influenza virus infection

induces innate immune responses mediated by the TLR7 and RIG-I signaling pathways. Pulmonary macrophages migrate to infected epithelial cells in

a CCL2-CCR2-dependent manner and induce apoptosis in the respiratory epithelial cells via TRAIL-death receptor 5 (DR5) interactions. On the other

hand, the interaction of CD200 and CD200R downregulates the inflammatory response, including IL-6 and TNFa production by macrophages. Effector

CD8T cells also inhibit the inflammatory response by IL-10. CD4T cells and macrophages produce IL-2 and IL-27, respectively, to support the

regulatory function of IL-10-producing effector CD8T cells.
severe pneumonia [60��]. Furthermore, examination of

lung sections from fatal cases of influenza A(H1N1)2009

infection revealed C4d deposition around the bronchi,

indicating that an abnormal adaptive immune response

may have contributed to the influenza pathogenesis.

Summary
The pathogenicity of influenza virus is dependent on the

function of viral proteins and on host immune responses,

including innate and acquired immunity, indicating the

importance of both viral factors and the host immune

system for influenza pathogenesis. A recent report

showed that commensal microflora is important for the

appropriate activation of pulmonary dendritic cells to

induce influenza virus-specific immune responses

[61��]. Therefore, the environmental conditions that sur-

round the host and virus, including commensal microflora,

must also be considered as factors contributing to viral

pathogenesis. Despite extensive research on IAV patho-
Current Opinion in Immunology 2011, 23:481–486
genesis, we still do not have effective therapies for IAV

infection, except for antiviral drugs. Moreover, the emer-

gence of drug-resistant viruses jeopardizes the effective-

ness of these agents (Table 1) [62–64]. Controlling

excessive host responses could serve as the basis of

new strategies for the treatment of severe cases of IAV

infection. A comprehensive understanding of how virus

pathogenesis is mediated by various factors should assist

in the development of new therapies to combat highly

pathogenic IAV infections.
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